NoSQL Databases and When to Use Them
Cassandra, Hbase, Mongo-DB & Couchbase

T

cassandra

Couchbase

monngB

Contents
1.Introduction

1.1 What is NOSQL
2.Cassandra

2.1. When should we use Cassandra

2.2. Some more key features

2.3. When should we not use Cassandra
3.Hbase

3.1. When should we use Hbase

3.2. Some more key features

3.3. When should we not use Hbase
4.MongoDB

4.1. When should we use MongoDB

4.2. Some more key features

4.3. When should we not use MongoDB
5.Couchbase

5.1. When should we use Couchbase

5.2. Some more key features

5.3. When should we not use Couchbase
6.Comparision

6.1. Comparison NOSQL DataBase

1. Introduction

The aim of this whitepaper is to investigate the suitability of NoSQL as a data source. NoSQL
databases are a compelling alternative to relational databases because of their capability to store
and process large amounts of loosely structured data at fast speeds. The cost effectiveness of such
solutions and the proliferation of new data sources have led to widespread adoption of NoSQL

1.1. What is NoSQL

NoSQL databases were created to address the limitations of relational database
management systems. NoSQL seeks to break away from the traditional structure of
relational databases, and enable developers to implement models in ways that more
closely fit the data flow needs of their system. This means that NoSQL databases can be
implemented in ways that traditional relational databases could never be structured.A
NoSQL database environment is, simply put, a non-relational and largely distributed
database system that enables rapid, ad-hoc organization and analysis of extremely
high-volume, disparate data types. NoSQL databases are sometimes referred to as cloud
databases, non-relational databases, Big Data databases and a myriad of other terms and
were developed in response to the sheer volume of data being generated, stored and
analyzed by modern users (user-generated data) and their applications
(machine-generated data).

In general, NoSQL databases have become the first alternative to relational databases,
with scalability, availability, and fault tolerance being key deciding factors. They go well
beyond the more widely understood legacy, relational databases (such as Oracle, SQL
Server and DB2 databases) in satisfying the needs of today’s modern business
applications. A very flexible and schema-less data model, horizontal scalability,
distributed architectures, and the use of languages and interfaces that are “not only” SQL
typically characterize this technology.

From a business standpoint, considering a NoSQL or ‘Big Data’ environment has been
shown to provide a clear competitive advantage in numerous industries. In the ‘age of
data’, this is compelling information as a great saying about the importance of data is
summed up with the following “if your data isn’t growing then neither is your business”.

www.BigDataTrunk.com Page 3

http://planetcassandra.org/blog/post/schema-vs-schema-less
http://planetcassandra.org/blog/post/schema-vs-schema-less

2. Cassandra

Cassandra is a massively scalable open source NoSQL database. Cassandra is perfect for
managing large amounts of structured, semi-structured, and unstructured data across multiple
data centers and the cloud. Originally created for Facebook, Cassandra is designed to have
peer-to-peer symmetric nodes, instead of master or named nodes, to ensure there can never be a
single point of failure (SPoF). Cassandra automatically partitions data across all the nodes in the
database cluster, but the administrator has the power to determine what data will be replicated
and how many copies of the data will be created.

2.1. When should we use Cassandra?

Being a part of NoSQL family Cassandra offers solution for problem where your requirement
is to have very heavy write system and you want to have quite responsive reporting system
on top of that stored data. Consider use case of Web analytics where log data is stored for
each request and you want to built analytical platform around it to count hits by hour, by
browser, by IP, etc in real time manner. Cassandra Scales linearly with massive
write.Cassandra can be integrated with Hadoop, Hive and Apache Spark for batch
Processing.

2.2. Some more key features

Written in: Java

Main point: Store huge data sets in "almost" SQL
License: Apache

Protocol: CQL3 & Thrift

CQL3 is very similar SQL, but with some limitations that come from the scalability (most

L g b b G

notably: no JOINs, no aggregate functions.)

*

CQL3 is now the official interface. Don't look at Thrift, unless you're working on a legacy
app. This way, you can live without understanding Column Families, Super Columns, etc.
% Querying by key, or key range (secondary indices are also available)

% Tunable trade-offs for distribution and replication (N, R, W)

www.BigDataTrunk.com Page 4

L . b b b D

*

Writes can be much faster than reads (when reads are disk-bound).

Map/reduce possible with Apache Hadoop.

All nodes are similar, as opposed to Hadoop/HBase.

Very good and reliable cross-datacenter replication.

Distributed counter data type.

You can write triggers in Java.

Best used: When you need to store data so huge that it doesn't fit on server, but still want
a friendly familiar interface to it.

Example: Web analytics, to count hits by hour, by browser, by IP, etc.

2.3. When should we not use Cassandra?

Cassandra is typically not the choice for transactional data that needs per-transaction
commit/rollback capabilities. Note that Cassandra does have atomic transactional abilities
on a per row/insert basis (but with no rollback capabilities).

3. Hbase

Hbase is a column-oriented database management system which runs on top of HDFS. About 45%
of Hadoop users today are estimated to be using HBase. Hbase is not a relational data store, and it
does not support structured query language like SQL.In Hbase, a master node regulates the
cluster and region servers to store portions of the tables and operates the work on the data.

3.1 When should we use Hbase?

* % % % %

High capacity storage system
Distributed design to cater large tables
Column-Oriented Stores

Horizontally Scalable

High performance & Availability

www.BigDataTrunk.com Page 5

3.2. Some more key features

Written in: Java

Main point: Billions of rows X millions of columns

License: Apache

Protocol: HTTP/REST (also Thrift)

Modeled after Google's BigTable

Uses Hadoop's HDFS as storage

Map/reduce with Hadoop

Query predicate push down via server side scan and get filters
Optimizations for real time queries.

A high performance Thrift gateway.

HTTP supports XML, Protobuf, and binary.

Jruby-based (JIRB) shell.

Rolling restart for configuration changes and minor upgrades.
Random access performance is like MySQL.

A cluster consists of several different types of nodes.

* % % O % O % % %

Best used: Hadoop is probably still the best way to run Map/Reduce jobs on huge
datasets. Best if you use the Hadoop/HDFS stack already.
* For example: Search engines. Analysing log data. Any place where scanning huge,

two-dimensional join-less tables are a requirement.

3.3. When should we not use Hbase?

New data only needs to be appended
Batch processing instead of random reads
Complicated access patterns (such as joins)

Full ANSI SQL support required

* Ot Ok %

A single node can deal with the volume and the velocity of the complete data set

www.BigDataTrunk.com Page 6

4. MongoDB

Mongo

DB is a No SQL product supported by 10 gen.Mongo DB stores documents in “Collections”.

Collections are analogous to tables. Mongo DB stores data in memory, so it is hugely memory
hungry. For redundancy, data is stored to disk and this makes it a high 10 system as well
(depending on the load and the amount of data). MongoDB supports dynamic schema design,
allowing the documents in a collection to have different fields and structures. The database uses a
document storage and data interchange format called BSON, which provides a binary

representation of JSON-like documents.

4.2. When should we use MongoDB?

*

MongoDB by default prefers high insert rate over transaction safety. If you need to load
tons of data lines with a low business value for each one, MongoDB should fit.

If you need to partition and shard your database, MongoDB has a built in easy solution for
that.

MongoDB has built in special functions, so finding relevant data from specific locations is
fast and accurate.

If you don't have a DBA, and you don't want to normalize your data and do joins, you

should consider MongoDB.

4.2. Some more key features

L i g . D D D b D

Written in: C++

Main point: Retains some friendly properties of SQL. (Query, index)
License: AGPL (Drivers: Apache)

Protocol: Custom, binary (BSON)

Master/slave replication (auto failover with replica sets)

Sharding built-in

Queries are javascript expressions

Run arbitrary javascript functions server-side

Uses memory mapped files for data storage

www.BigDataTrunk.com Page 7

Performance over features

Journaling (with --journal) is best turned on

On 32bit systems, limited to ~2.5Gb

Text search integrated

GridFsS to store big data + metadata (not actually an FS)
Has geospatial indexing

Data centre aware

L G D b D b i

Best used: If you need dynamic queries. If you prefer to define indexes, not map/reduce
functions. If you need good performance on a big DB. If you wanted CouchDB, but your
data changes too much, filling up disks.

% For example: For most things that you would do with MySQL or PostgreSQL, but having

predefined columns really holds you back.

4.3. When should we not use MongoDB?

% Multi-Object Transactions: MongoDB only supports ACID transactions for a single
document.

% SQL: SQL is well-known and a lot of people know how to write very complex queries to do
lots of things. This knowledge is transferrable across a lot of implementations where
MongoDB's queries language are specific to it.

% Strong ACID guarantees: MongoDB allows for things like inconsistent reads which is fine
in some applications, but not in all.

% Traditional BI: A lot of very powerful tools exist that allow for OLAP and other strong BI

applications and those run against traditional SQL database.

www.BigDataTrunk.com Page 8

5. Couchbase

Couchbase is an open source, document-oriented database that has a flexible data model, is
performant, is scalable, and is suitable for applications like the one in our use case that needs to
shift its relational database data into a structured JSON document.

5.1. When should we use Couchbase?

% Flexible Data Model
% Easy Scalability

% Consistent High Performance

% Always Online

% cross-datacenter replication

% auto-failover

5.2. Some more key features

L b b D D b D T . b

Written in: Erlang & C

Main point: Memcached compatible, but with persistence and clustering
License: Apache

Protocol: memcached + extensions

Very fast (200k+/sec) access of data by key

Persistence to disk

All nodes are identical (master-master replication)

Provides memcached-style in-memory caching buckets, too
Write de-duplication to reduce 10

Friendly cluster-management web GUI

Connection proxy for connection pooling and multiplexing (Moxi)
Incremental map/reduce

Cross-datacenter replication

www.BigDataTrunk.com Page 9

Best used: Any application where low-latency data access, high
concurrency support and high availability is a requirement.

For example: Low-latency use-cases like ad targeting or highly-concurrent

L . i

web apps like online gaming (e.g. Zynga).

5.3. When should we not use Couchbase?

% When you ask Couchbase to save a document for you, it immediately allocates it to RAM,
and adds it to a write queue. On a simplistic level, the write queue churns through its list
of documents and persists them to disk. Holding data in RAM and adding to the write
queue has a number of advantages, such as the ability to perform fast writes and to query
this data immediately. However, there is not currently any way in Couchbase to know if a
document has been persisted to disk.

% The other problem with this approach is that you may lose data if your system goes down
whilst holding a large write queue. Whilst the amount of RAM you hold is important for
good Couchbase performance, you need to ensure that disk I/0 is quick enough to keep
the write queue low. Generally, the more nodes you have, the better your I/0
performance since increasing the number of servers will increase your overall [/0
bandwidth. If your application needs high write rates, you may need to think about
clustering a larger number of less powerful servers.

% You will need to write a view (think of this as pulling together data from different
sources) with a map function (in javascript) for every query you want to run in

Couchbase.

www.BigDataTrunk.com Page 10

6. Comparison

6.1. Comparison NOSQL DataBases

Name cassandra Hbase MongoDB Couchbase
Description Wide-column Wide-column One of the most | JSON-based
store based on | store based on | popular document store
ideas of Apache Hadoop | document derived from
BigTable and and on concepts | stores CouchDB with a
Dynamo DB of BigTable Memcached-co
Database model mpatible
Document store interface
Database model | Wide column Wide column Document Document store
store store store
Developer Apache Apache MongoDB,inc Couchbase, Inc.
Software Software
Foundation Foundation
License Opensource Opensource Opensource Opensource
Database as a No No No No

Service (DBaaS)

o

Implementation | Java Java C++ C, C++, Go and
language Erlang
Server operating | BSD Linux Linux Linux
systems Linux Unix 0SX 0SX
0SX Windows Solaris Windows
Windows Windows
Typing Yes No Yes Yes
XML support Yes No No No
Secondary Yes NO YES YES
indexes
SQL No No No No
Mapreduce Yes Yes Yes Yes
APIs and other Proprietary Java API proprietary Memcached
access methods protocol RESTful HTTP protocol using | protocol
API JSON RESTful HTTP
Thrif API
Replication This is due to selectable Master-slave Master-master
methods cassandra is replication replication replication
) factor Master-slave
designed as a S
replication
peer- to- peer
User concepts Access rights Access Control | Access rights Memcached
for users can be | Lists (ACL) for users and protocol

defined per
object

roles

RESTful HTTP
API

Thank you

